Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Underwater backscatter is a recent networking technology that enables net-zero-power communication and sensing in underwater environments. Existing research on underwater backscatter has focused on designing and demonstrating early systems with impressive capabilities; however, what remains critically missing is an end-to-end analysis of the underwater backscatter communication channel, which is necessary to understand the potential of this technology to scale to real-world applications and practical deployments. This paper presents the first comprehensive theoretical and empirical analysis of the underwater backscatter channel, including the downlink and uplink of end-to-end backscatter. We introduce a closed-form analytical model that encompasses the physical properties of piezoelectric materials, electromechanical coupling, electrical impedance, and the underwater acoustic channel. We verify the correctness of this theoretical analysis through both finite-element-model physical simulations and real-world experimental validation in a river, demonstrating that the analytical model matches our real-world experiments with a median deviation of only 0.76 dB. Using this model, we then simulate the theoretical limits of underwater backscatter as a function of different design parameters and identify pathways for pushing underwater backscatter toward its theoretical limits.more » « less
-
We present the design, implementation, and evaluation of Van Atta Acoustic Backscatter (VAB), a technology that enables long-range, ultra-low-power networking in underwater environments. At the core of VAB is a novel, scalable underwater backscatter architecture that bridges recent advances in RF backscatter (Van Atta architectures) with ultra-low-power underwater acoustic networks. Our design introduces multiple innovations across the networking stack, which enable it to overcome unique challenges that arise from the electro-mechanical properties of underwater backscatter and the challenging nature of low-power underwater acoustic channels. We implemented our design in an end-to-end system, and evaluated it in over 1,500 real-world experimental trials in a river and the ocean. Our evaluation in stationary setups demonstrates that VAB achieves a communication range that exceeds 300m in round trip backscatter across orientations (at BER of 10−3). We compared our design head-to-head with past state-of-the-art systems, demonstrating a 15× improvement in communication range at the same throughput and power. By realizing hundreds of meters of range in underwater backscatter, this paper presents the first practical system capable of coastal monitoring applications. Finally, our evaluation represents the first experimental validation of underwater backscatter in the ocean.more » « less
-
Abstract Imaging underwater environments is of great importance to marine sciences, sustainability, climatology, defense, robotics, geology, space exploration, and food security. Despite advances in underwater imaging, most of the ocean and marine organisms remain unobserved and undiscovered. Existing methods for underwater imaging are unsuitable for scalable, long-term, in situ observations because they require tethering for power and communication. Here we describe underwater backscatter imaging, a method for scalable, real-time wireless imaging of underwater environments using fully-submerged battery-free cameras. The cameras power up from harvested acoustic energy, capture color images using ultra-low-power active illumination and a monochrome image sensor, and communicate wirelessly at net-zero-power via acoustic backscatter. We demonstrate wireless battery-free imaging of animals, plants, pollutants, and localization tags in enclosed and open-water environments. The method’s self-sustaining nature makes it desirable for massive, continuous, and long-term ocean deployments with many applications including marine life discovery, submarine surveillance, and underwater climate change monitoring.more » « less
An official website of the United States government
